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I
n the past decade, there has been a dra-
matic increase in the use of nanoparti-
cles (NPs) in research and in industrial

production, which has raised questions

about the potential toxicity of such

materials.1,2 Thus, the field of nanotoxicol-

ogy was born, giving rise to conference se-

ries and specialized journals. Historically,3

interest in the potential toxicity of very

small particles goes back to studies of work-

ers exposed to metal fumes4 andOafter rec-

ognizing the nano-sized nature of these

fumesOinhalation studies with ultrafine

particles.5�8 With the expected increased in-

tentional (e.g., in the field of medical

diagnostics9�12) and unintentional (e.g., in

occupational settings13 and chemical waste

streams) exposures to NPs, however, nano-

toxicology has now become a critical ele-

ment in safety assessments of nanomateri-

als. From the viewpoint of journals focused

on the nanoscale perspective, such as ACS

Nano, the question of whether the nanopar-

ticulate state itself contributes to toxicity is

most important. Whereas first investiga-

tions concerning the toxicity of NPs were

based on in vivo experiments (i.e., inhala-

tion studies, etc.), the ability to design a

large variety of different NPs led to a huge

body of work based on in vitro studies. Due

to their presumed lower complexity, in vitro

studies with well-defined model NPs en-

able the identification of conceptual mod-

els for interactions of NPs with cells. In vitro

high-dose toxicology and mechanistic stud-

ies should be viewed as proof-of-principle

studies, though, that ultimately require vali-

dation in vivo. A major issue that needs to

be carefully considered is the relevancy of

the doses applied in vitro for predicting in

vivo outcomes. With the necessity of in vivo

validation kept in mind, several properties

of NPs have been demonstrated to change

the in vitro (and partly also in vivo) toxicity of

NPs as compared to the bulk state.

First, in comparison with bulk materials,

NPs possess a higher surface-to-volume ra-

tio and thus an enhanced contact area with

their surroundings than do bulk materials

at the same mass. This is particularly true for

porous NPs.14 This could mean that cata-

lytic or other active sites on the particle sur-

face are exposed,6,15�17 in some cases induc-

ing the formation of reactive oxygen

species (ROS). Increased surface area may

also foster dissolution of the materials and

thus lead to the release of potentially toxic

ions, which would be very undesirable in

the case of several types of heavy metals

such as Cd or Ag.12,18�22 However, it is well-

known that some NPs have high surface en-

ergy, which promotes both interparticle ag-

glomeration and adsorption of constituents

from the environment, such as

proteins.23�25 NPs have also been demon-

strated in vitro to themselves alter biologi-

cal matter at the contact interface, as, for ex-

ample, in the conformation of proteins.26,27

All of these events at the NP surface could

change the mode of interaction with the

environment.28,29

Second, due to their small size, NPs are

retained in many cells and organs to a larger

extent than are larger particles.30�33 Argu-

ably, effects of a reactive material at the

same concentration can be higher at the in-

tracellular level than at the extracellular

level34 due to solubilization or degradation

that takes place inside cells.35 Toxic effects

have also been demonstrated to depend on
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ABSTRACT Nanotoxicology is still a

new discipline. In this Perspective,

both its origins and its future trends

are discussed. In particular, we note

several issues we consider important

for publications in this field.
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the uptake mechanism,36 presum-
ably due to differences in fate, for
example, being stored in intracellu-
lar vesicles.37 In vivo experiments of
NP retention on the order of years
have been reported.38 This opens
the door for long-term effects that
have to be considered in case of
prolonged accumulation and reten-
tion in the organism, such as in the
spleen and liver.39

Third, in comparison with un-
structured bulk material, the shape
of NPs can play a crucial role in a de-
termining response.40�43 Geometric
effects have been highlighted by
the example of needle-shaped car-
bon nanotubes, which impale entire
cells.44�47

Although a lot of research has
been dedicated to these issues,47�50

involving new high-throughput as-
says for toxicological screening and
new cell culture models,22,27,51,52 the
general questions of nanotoxicol-
ogy are far from being resolved. The
examples given above should be
viewed as snapshots of specialized
conditions involving high doses or
concentrations. Thus, there is a con-
sequent demand for interlabora-
tory comparisons, given the differ-
ent results based on varying
methods of outcome measure-
ment, pretest particle preparation,
and analyses of results. Interlabora-
tory and international standardiza-
tion and harmonization of methods
are certainly desirable goals for the
future. In the same vein, we again
have to point out that the above
model on specific interactions be-
tween NPs and cells focuses heavily
on in vitro findings, and extrapola-
tion to in vivo is not straightforward.
In the following, we thus provide
several points that we feel are im-
portant for nanotoxicological
screening approaches in the future.
Pretesting criteria that should be
kept in mind include (1) the need
for defined and well-characterized
NPs as model systems; (2) knowl-
edge of NP properties and poten-
tial for exposure during all stages of
their life cycle; (3) the need for
knowledge about biokinetics; (4)

the need for validated in vitro mod-
els that are predictive of outcomes
following in vivo exposures; (5) the
need for evidence that in vitro out-
comes are NP-specific via appropri-
ate benchmarking (i.e., does a solute
produce the same response? Do
larger particles of the same compo-
sition produce the same response?);
and (6) the need for ranking new
NPs against well-validated bench-
mark NPs.

Starting with the NPs them-
selves: What happens to NPs once
they are synthesized? Phenomena
concerning NPs at the nanoscale are
complex, and the characterization
techniques that are available are
still limited, as are the descriptions
of NP behavior during their full life
cycle. Physico-chemical character-
ization of NPs is paramount in or-
der to correlate biological/toxico-
logical responses with these
properties.53 For example, when in-
vestigating size-dependent
effects,54�57 the size distribution of
the NPs in relevant biological media
needs to be described.58 Agglom-
eration of NPs has been demon-
strated to have a profound impact
on their toxicity in vitro.41 Although
standard procedures for the synthe-
sis of NPs now exist, we have to be
critical about how precisely the
properties of these NPs are de-
fined. First, NPs can be synthesized
in different ways (e.g., by laser abla-
tion or wet synthesis), possibly lead-
ing to different behavior when ex-
posed to biological media. In fact,
although normal aging (e.g., Ost-
wald ripening, corrosion, aggrega-
tion, surface state modification) and
physical interactions may already af-
fect NP properties, biomolecules
can also substantially modify
NPsOand hence their reactivity.
NPs must be suspended in biocom-
patible aqueous culture media to al-
low interaction with cells in culture,
tissue, or organisms. As a result,
phenomena of aggregation and ag-
glomeration can occur. Also, de-
pending on the composition and
exposure time to the biological en-
vironment, NPs can be corroded or

dissolve into their constituent at-

oms, which modifies the chemical

composition of the mixture and

may affect redox and other pro-

cess. Finally, unreacted precursors

could themselves affect biological

responses unless proper purifica-

tion after synthesis is performed. As

previously mentioned, proteins

present in biological media can

readily associate with the NP sur-

face (protein corona), which

changes the features of their inter-

action with cells.23,59 Thus, key NP

characteristics including, but not

limited to, shape, size, number,

chemical composition, and surface

properties such as charge and coat-

ing need to be assessed before

use, at the moment of delivery, and

during interaction with biological

environments. Respective methods

should be developed and standard-

ized to facilitate interlaboratory

comparisons.

An important question in nano-

toxicology relates to the selection

of doses, both for in vitro and in vivo

studies.60,61 Many studies are driven

by a desire to demonstrate an effect

and to determine underlying mech-

anisms, which is most easily

achieved with high NP doses. These

doses may never be reached under

realistic exposure conditions at the

organ of entry or in secondary or-

gans, however, considering the ex-

pected low translocation rates of NP

distribution within and between or-

gan systems (Figure 1).62 Any NP ad-

Physico-chemical

characterization of NPs

is paramount in order

to correlate

biological/toxicological

responses with these

properties.
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ministered at high enough doses
will induce “toxicity”; as Paracelsus’
rule states, the dose alone defines
the poison. In vivo extrapolation of
results from high-dose in vitro stud-
ies and the interpretation of results
of high-dose in vivo studies need to
be undertaken with great caution.
Using the lung as an example, pre-
dictive NP deposition models show
that the amount of inhaled NPs de-
positing per unit surface area of the
alveolar region is up to several or-
ders of magnitude lower than the
doses that are routinely used in in
vitro studies with alveolar epithelial
cells.63 Likewise, the relevance of in
vivo bolus-type instillation studies
(nasal, intratracheal) comes into
question when researchers use
doses that far exceed those
achieved under realistic human ex-
posure scenarios. Results of such
studies may be considered as proof-
of-principle or as hypothesis-
forming, but verification by appro-
priately designed inhalation studies
will be necessary. Proper inhalation
studies will also inform about the
biokinetics of NPs and provide
quantification of the amounts that
reach secondary organs; these are
only very small fractions of the
doses depositing in the lung.64 Such
data will be important not only for
identifying specific target organs
but also for designing in vitro stud-
ies so that relevant doses can be se-
lected for assessing NP-induced ef-
fects and underlying mechanisms.

Which cells or tissues or organ-
isms should be used for screening?
Naturally, the choice of model is
critical to a more thorough under-
standing of NP hazards. The serious
limitations of in vitro studies, includ-
ing the use of single cell types in
culture and the methods of expos-
ing cells, should be considered.
Physiological relevance comes into
question in the first case, as an in
vivo scenario in which only a single
cell type interacts with the NPs is
unrealistic. Not only are organ sys-
tems diverse in their cellular
makeup, but different cell types of-
ten participate in coordinated

responses. Recent work focusing

on the lung, for example, has dem-

onstrated how cultured epithelial

cells, macrophages, and dendritic

cells cooperate in nanoparticle traf-

ficking, and that uptake into the

cells is enhanced in coculture in

comparison with monoculture.65,66

Furthermore, the delivery of par-

ticles in a bolus of culture medium

does not accurately reflect real-

world dosimetry, where NPs are

likely to accumulate gradually. Thus,

in vitro studies have to be critically

challenged and results cautiously

interpreted regarding their biologi-

cal relevance.67

Nanotoxicology is a relatively

new field, and the concepts of do-

simetry, dose metrics, exposure as-

sessment, hazard identification, and

risk characterization are still being

assessed. The fact that we are still

far away from the state in which a

conclusive overall picture exists

makes it an exciting, open area of

modern research.
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